

Este Switch

Medical INC.

Medikal Anonim Şirketi

#1. Wellstox MesoCut Key point

#2. Core Ingredient

#3. Prior efficacy evaluation test

#4. Efficacy evaluation test

#5. Befor & After

WELLSTOX

MESOCUT THERAPY

It optimizes the skin condition by removing dead skin particles and helps to make the skin smooth.

It optimizes the skin condition by removing dead skin particles and helps to make the skin smooth.

WHAT IS Wellstox MesoCut?

MAIN INGREDIENTS

Sodium Deoxycholate

Carnitine

Bromelain

Thioctic Acid

Five key ingredients composed of optimal composition changes the fat storage environment in the body, leading to a reduction in the number and size of fat cells. Rapid discharge of fat decomposition products and cellulite relief effect by promoting lymphatic circulation

Wellstox MesoCut Key Point?

Summar y

- Adopt QH Bio's own complex raw materials that are combined in an optimal ratio for sure fat breakdown "SLIMSHOTZTM"
- Combined in the optimal ratio to maintain the concentration that secures safety while having the maximum effect.
- 1)Glycerophosphocoline (GPC) As a key ingredient, it emulsifies fat and induces excretion in bile or urine
 - 2)Sodium Deoxycholate(DC) Reduces the size and number of fat cells by directly destroying the fat cells inducing necrosis.
 - 3)Thiotic acid Promotes energy expenditure by improving carbohydrate metabolism
 - 4) Carnitine Converts fat cells into energy to accelerate body fat breakdown
 - 5)Bromelain Breaking down of visceral fat and excretion of stagnant waste products in the body
- Wellstox MesoCut is composed of ingredients harmless to the human body, such as vitamins and antioxidants, which not only have the effect of breaking down fat, but also improve the elasticity of fibrous tissue, improve cellulite, and help maintain a healthy body.
- It is also expected to help with anti-aging effect and skin elasticity by removing free radicals, inflammation, and toxic substances, as well as improving blood circulation and activating lymph drainage.

SLIMSHOTZ TM

PHOSPHOCHOLINE DEOXYCHOLATE

BROMELAIN THIOCTIC A

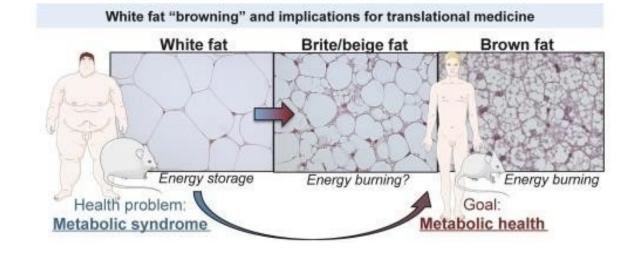
Wellstox MesoCut?

Summar y

Fat decomposition "3-STEP action"

Triple action at once:

1. lipolysis


2. fat cell destruction

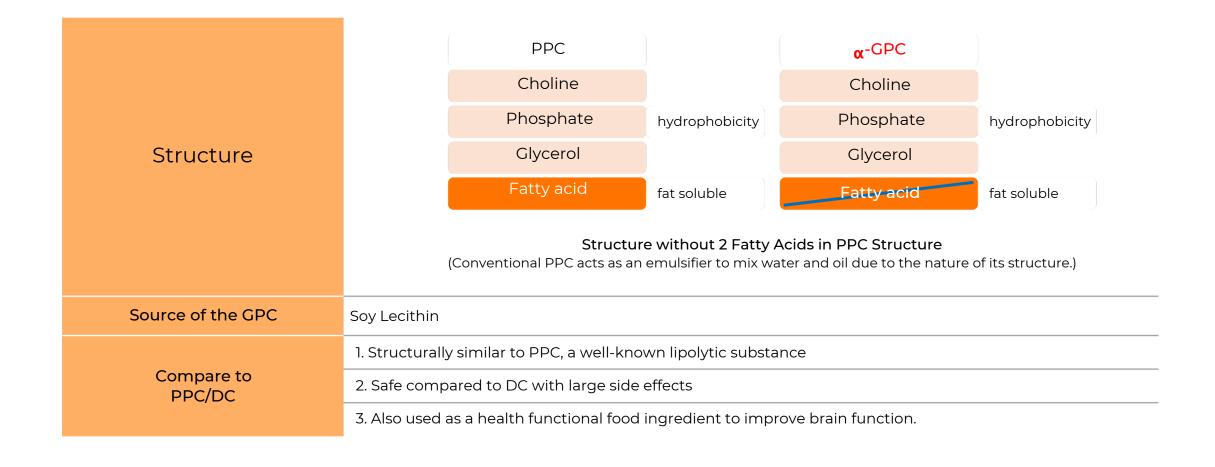
3. inhibition of fat cell differentiation

Before Treatment Direct Adipocyte Effects Lysis of Adipocytes Macrophage Infiltration, Phagocytosis, and Filtroblast Recruitment Healthy Adipocytes Macrophage Infiltration, Phagocytosis, and Filtroblast Recruitment Minimal Residual Infilammation and Septal Thickening Adipocytes

Promotes fat decomposition by promoting fat metabolism

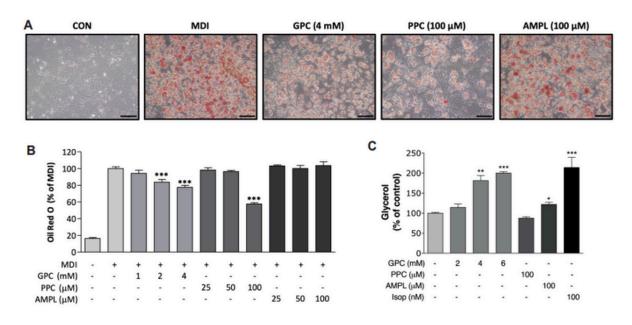
Induces browning of white fat, which is the cause of fat accumulation, and decomposes fat through improved metabolism

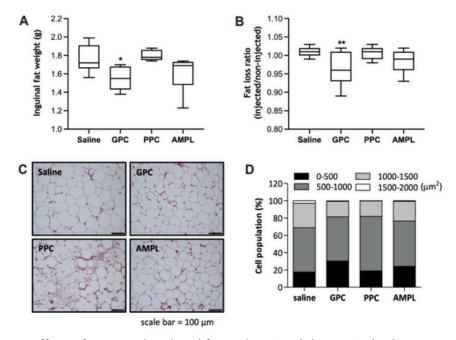
GPC (Glycerophosphocholine)



- It is originally used as a pharmaceutical medicine for cerebrovascular/degenerative brain disease, but the fatty oxidized effect has been known and is now widely used as a nonsteroidal lipolytic material.
- It is an essential nutrient for healthy cell membranes and is also used as a health functional food ingredient to improve brain function.
- Extracted from lecithin contained in soybeans.
- GPC is structurally similar to PPC, which is often used as a component for decomposition of fat and has a structure without two fatty acids.
- As PPC is a poorly soluble component, DC with large side effects must be used as an emulsifier, but GPC does not use DC, side effects are relatively few or no.
- Although the functional mechanism is almost identical to that of PPC but reported as a safe and painless substance.

 Mechanism of action of GPC as a lipolytic core substance
 - : Emulsification of fat cells Promotes the action of lipase, an enzyme that breaks down fat
 - → Dissolved fat is excreted in bile or urine


GPC (Glycerophosphocholine)



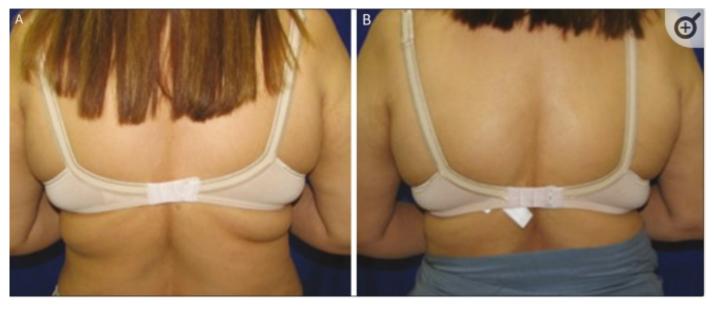
GPC (Glycerophosphocholine)

Effect of GPC on lipid accumulation and lipolysis in 3T3-L1 adipocytes. (A) Representative photomicrographs show lipid accumulation in the cell treated with GPC. 3T3-L1 cells were induced to differentiate with adipogenic cocktail containing IBMX, dexamethasone and insulin (MDI) in the presence or absence of GPC, PPC or AMPL. Lipid accumulation was visualized with Oil Red O staining. Scale = 100 mm (B) Intracellular lipid content in differentiated adipocytes concomitantly treated with different compounds was quantified by elution of Oil Red O stain

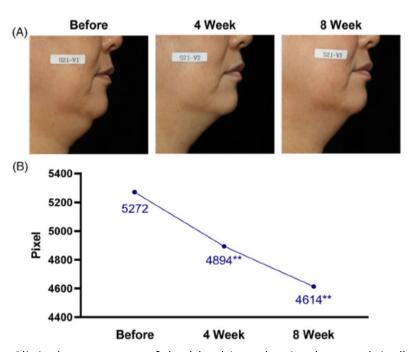
Effect of GPC on localized fat reduction. (A) Inguinal adipose tissue was dissected and measured after 3 days of GPC, PPC or AMPL injection. *p < 0.05 vs. saline control. (B) Ratio of injected or non-injected mouse inguinal fat pads mass was calculated.

DC (Sodium Deoxycholate)

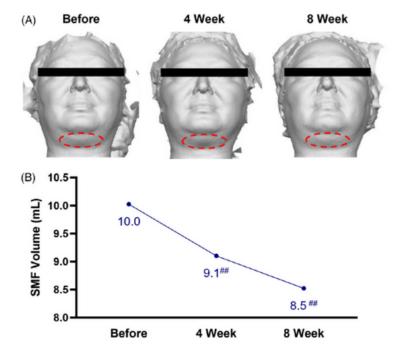
(A) Pre-procedural image showing prominent malar and jowl fat pads. (B) Post-procedural image showing reduction in malar and jowl fat pads after four sessions of injection lipolysis


(A) Pre-procedural image showing prominent submental fat pad (double chin). (B) Post-procedural image showing reduction in submental fat pad (double chin) after four sessions of injection lipolysis.

DC (Sodium Deoxycholate)

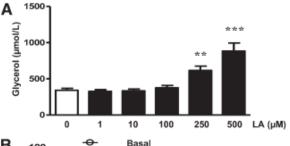

(A) Pre-procedural image showing arm with markings for injection lipolysis. (B) After six sessions of injection lipolysis for arm showing reduction in fat deposits of the arm

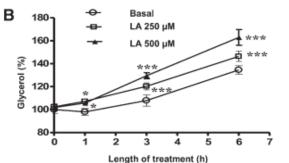
(A) Pre-procedural image showing prominent bra roll because of excess fat accumulation. (B) Post-procedural image showing reduction in the bra roll size after six sessions of injection lipolysis

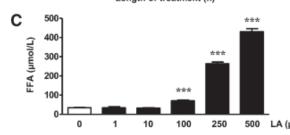

DC (Sodium Deoxycholate)

Clinical assessment of double chin reduction by area (pixel).

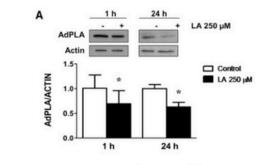
- (A) Representative images from the visual assessment of the submental area. The first image from the left was taken before the application of SCAI-NaDC, the second and third images were obtained after 4 and 8 weeks of daily SCAI-NaDC topical application.
- (B) Average submental fat (SMF) area was determined by ImagePro from 21 participants. **p < 0.05 by repeated measures ANOVA, post hoc Bonferroni correction.

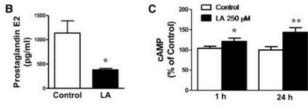

Clinical evaluation of the reductive effects of SCAI-NaDC topical application on submental fat (SMF).

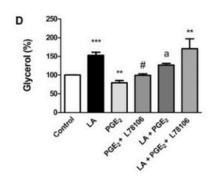

- (A) Representative images from the 3D evaluation of the submental region. Red highlights indicate the region of interest for numerical analysis.
- (B) Average SMF volume determined before and after 4 and 8 weeks of SCAl-NaDC application. ##p < 0.025 by Friedman test, post hoc Wilcoxon signed-rank test with Bonferroni correction.


Skin Res Technol.2023;29:e13293.

Thiotic Acid




LA stimulates lipolysis in 3T3-L1 adipocytes. Mature 3T3-L1 adipocytes were treated with LA (0–500 M) for the indicated times (1, 3, 6, or 24 h).

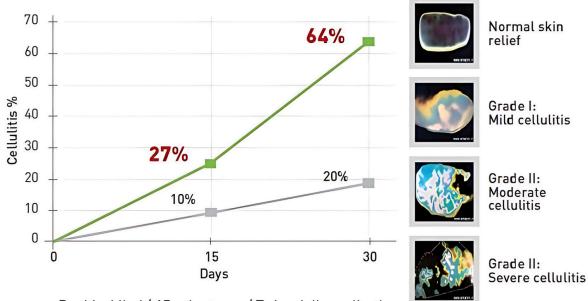

A.Lipolysis was assessed by the amount of glycerol released into media in adipocytes treated for 24 h.

B.Time-dependent effects of LA (250 and 500 M) on glycerol release.

C.Concentration-dependent effects of LA on FFA release in adipocytes treated for 3 h.

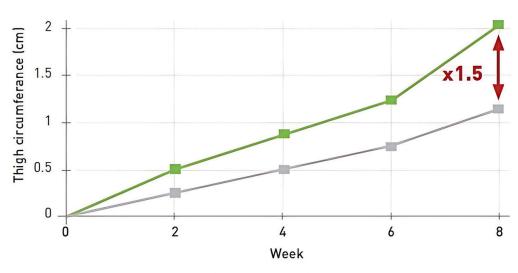
A reduces AdPLA levels and PGE 2 secretion and increases intracellular cAMP levels in 3T3-L1 adipocytes.

A.AdPLA protein levels at 1 and 24 h of treatment with LA (250 M).


- B.PGE 2 released to the media in 3T3-L1 adipocytes treated with LA (250 μ M) for 24 h.
- C.Intracellular cAMP levels at 1 and 24 h of treatment with LA (250 M).
- D.Effects of PGE 2 (0.5 ng/ml) on the lipolytic action of LA (250 M) in the presence or absence of the EP3 antagonist L78106 (10 M).

Thiotic Acid

Cellulitis reduction effect


: Thiotic acid of 3% Tx twice a day, reduced to a level of up to 44% after 4 weeks

Double-blind / 15 volunteers / Twice daily application

Thigh circumference reduction effect

: Tx of 1% Thiotic acid twice a day, after 8 weeks, the thigh circumference was reduced to 2cm level, which is 1.5 times different from simple massage level.

Double-blind / 14 volunteers / Twice daily application

Thiotic Acid

Relief effect of the surface (orange peel) in appearance

: (For healthy women between the ages of 25-33) As a result of the clinical trial for the application of the product containing the ingredient, the effect of easing the cellulite surface in the thigh/hip area in the form of 'orange peel' after 84 days has elapsed

Percentage of volunteers with improvement at the end of the study (day 84)

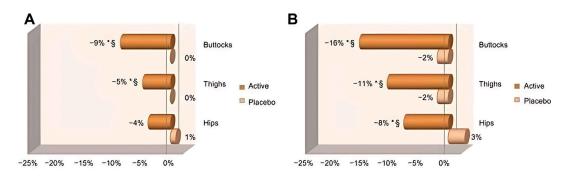
Zone	Thighs		Hips		Buttock	is	Mean	
Group	Active	Placebo	Active	Placebo	Active	Placebo	Active	Placebo
Tonicity	95%	55%	70%	40%	70%	30%	78%	42%
Orange peel	95%	40%	65%	10%	80%	20%	80%	23%
Stubborn cellulite	95%	40%	75%	20%	85%	35%	85%	32%
Mean	95%	45%	70%	23%	78%	28%	81%	32%

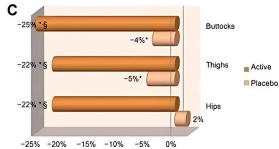
Circumference reduction effect

: Effect of reducing the circumference of the abdomen, thighs, and buttocks over time

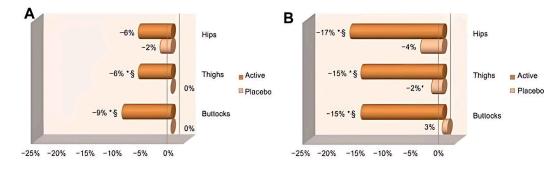
Means of the evolution (Dx–D0) of circumference measurements (in cm)

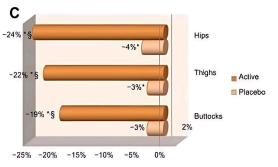
Time	Day 28		Day 56		Day 84	
Product	Active	Placebo	Active	Placebo	Active	Placebo
Abdomen	-0.4*	-0.2	-0.9°,§	-0.2	−1.1*, §	-0.4°
Right thigh	-0.3	0.0	-0.6°	-0.3	-0.8*,§	-0.3
Left thigh	-0.1	0.0	-0.4°	-0.2	-0.8*,§	-0.3
Hips/buttocks	-0.4	-0.1	-0.7°	-0.2	-0.8*	-0.4°


Clin Cosmet Investig Dermatol 2014;7:73-88

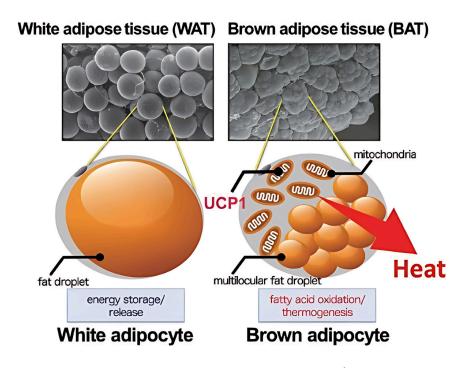

Thiotic Acid

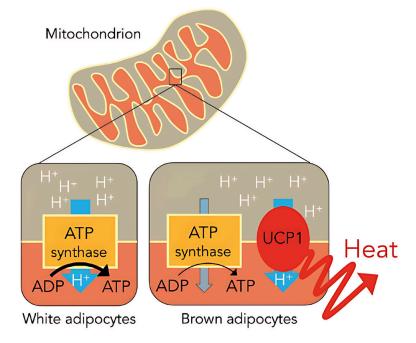
Orange peel surface relief effect on appearance


: The degree of relief of the orange peel appearance after 28 days, 56 days, and 84 days showed a decrease of 17-21% on average in the case of thighs/hips.



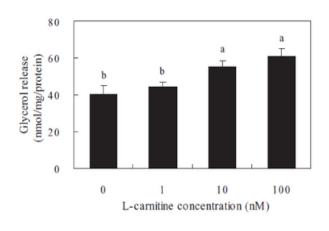
Cellulite relief effect

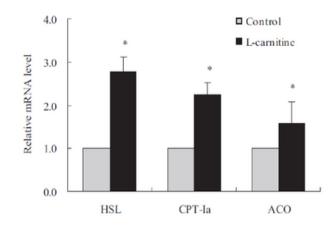

: The degree of cellulite relief after 28 days, 56 days, and 84 days showed a decrease of -19% on average in the case of thighs/hips

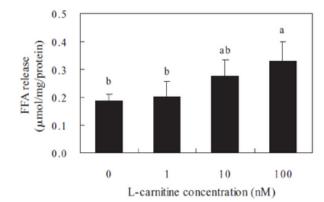


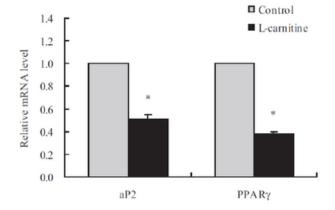
Carnitine

Korean J Obes 2016;25:109-114


SOFW journal 2016;9:14-17


- -'UCP-1' protein in brown fat is an important substance that burns fat and converts it into heat
- -In white fat, when ATP is full, the electron transport chain stops, but in brown fat, there is a specificity to express UCP-1.
- -In this process, arnitine acts as a vasodilator and a cellulite-removing substance that dissolves fat released from heat.


Carnitine

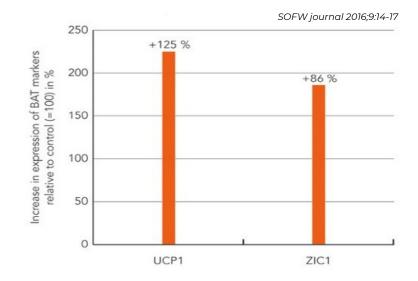


: L-carnitine inhibits intracellular lipid accumulation, increases adipocyte lipolysis, and stimulates lipolytic gene expression to suppress adipogenic gene expression (aP2, PPARr)

L-Carnitine (nM)	Lipid accumulation (%		
0	100.0 ± 9.6^{a}		
1	92.0 ± 10.0^{a}		
10	80.0 ± 3.6^{b}		
100	83.6 ± 5.5^{b}		

The values were calculated as a percentage of lipid accumulation of the control cells treated without L-carnitine and expressed as the mean \pm SD (n=5). Values with different superscript letters are significantly different at P < .05 by Duncan's test.

J Med Food 2006;9(4):468–473


Carnitine

Brown adipocyte marker expression significantly increased upon administration

: After administration of carnitine in the process of differentiation of pre-adipocytes into adipocytes, we compared the expression of UCP-1 and ZIC-1, markers for brown adipose tissue (BAT).

Compared to control group, UCP-1 increased by 125% and ZIC-1 showed a high expression rate of 86%. Through this, it can be seen that it plays an important role in inducing browning of adipose cells.

Confirmation of reduction in circumference of abdomen and thighs after weekly administration of 2%

: Comparison photo before and after application of the containing cream Significant reductions were observed in the waist, abdomen, thighs, and upper arms after Tx for a total of 8 weeks. It is confirmed that mean waist circumference -3.4cm, abdomen circumference -4.1cm, upper arm circumference -0.9cm, thigh circumference -2.2cm

SOFW journal 2016;9:14-17

Prior efficacy evaluation test

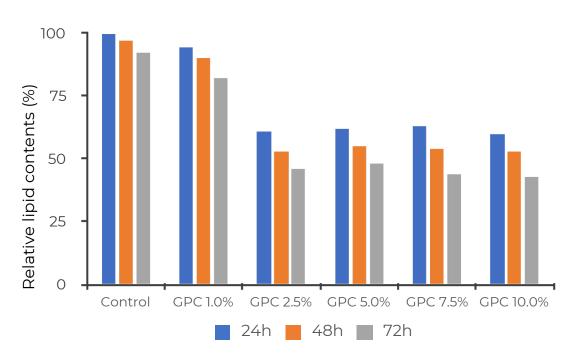
Check the cytotoxic concentration

Confirmation of cytotoxic concentration of deoxycholic acid (DCA) component: non-toxic up to ~0.8%

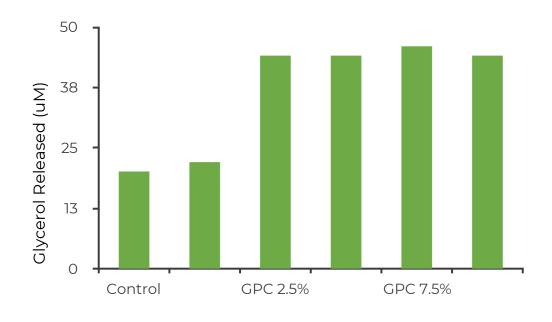
Assay			Resul t				
			DCA 0.5%	DCA 0.8%	DCA 1.0%	DCA 1.2%	DCA 1.5%
Cell Cytotoxicity Assay	Cell viability (%)	Control	100.0 %	100.0 %	100.0 %	100.0 %	100.0 %
		10-Dilition	95:01 % 101.2%	88.26 %	71.26 %	61.14 %	42.26 %
		10-2 Dilution	101.270	91.02 %	73.02 %	63.01 %	46.02 %
		10-3 Dilution		92.43 %	73.53 %	67.23 %	46.33 %

^{**} The standard of cytotoxicity is set at <80%. DCA concentration ~0.8%: PASS

Confirmation of cytotoxic concentration of Glycerophosphocholine (GPC) component: non-toxic up to ~10.0%


Assay				Resul t			
			GPC 1.0%	GPC 2.5%	GPC 5.0%	GPC 7.5%	GPC 10.0%
Cell Cytotoxicity Assay	Cell viability (%)	Control	100.0 %	100.0 %	100.0 %	100.0 %	100.0 %
		10-Dilition	95:74 % 101.2%	96.26 %	94.14 %	93.11 %	89.26 %
		10-2 Dilution	101.270	97.00 %	97.01 %	95.01 %	91.06 %
		10-3 Dilution		97.44 %	98.22%	95.66 %	93. 22 %

^{**} The standard of cytotoxicity is set at <80%. GPC concentration ~10.0%: PASS


Prior efficacy evaluation test

Check the cytotoxic concentration

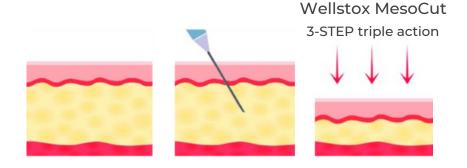
** After GPC treatment by concentration in adipocytes, the amount of lipid components dissolved from decomposed adipocytes is measured.

** After GPC treatment by concentration in adipocytes, the amount of Glycerol, a product of adipocyte degradation, was measured.


3-STEP triple action

Prediction of Adipocyte Change after Drug Injection

0.08 ~ 0.14mm in size fat cell mass


Changes in cell appearance, such as contraction of adipocytes by osmotic pressure after drug injection

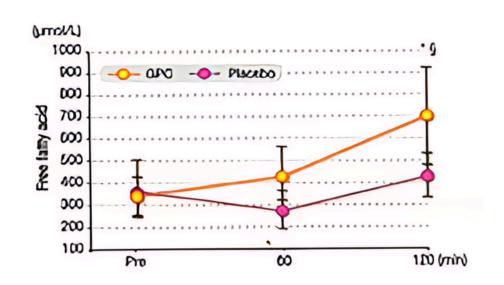
Destruction and dissolution of fat cells Reduced cell size and production of degradation products

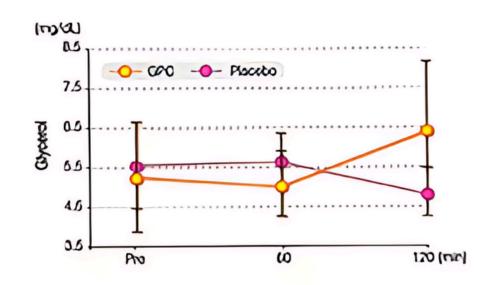
Excretion of degradation products in vitro and decreased number of adipocytes

Action 1.

Induction of fat cell contraction after drug injection based on osmotic pressure

Action 2.


Destruction and dissolution of fat cells by the action of key ingredients

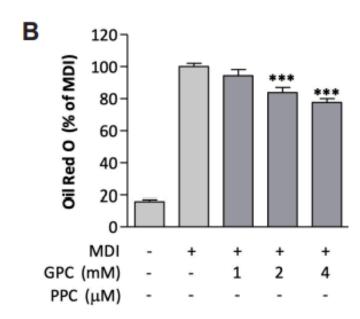

Action 3.

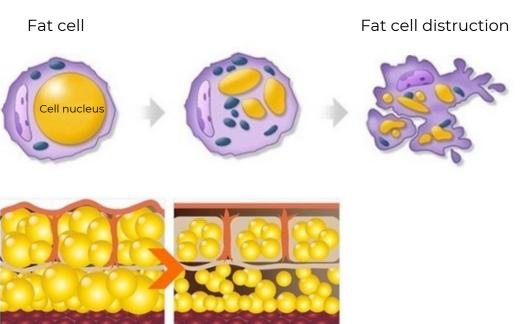
Acceleration of fat dissolution through the action of components that help lymphatic drainage

Glycerophosphocholine

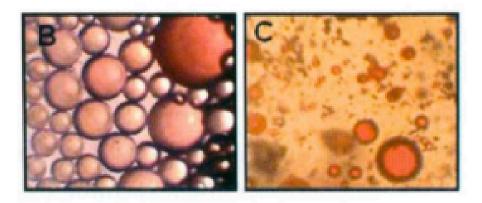
Increase in fatty acid oxidation, including increase in growth hormone (GH) After a single administration of GPC 1g, the free choline level and plasma growth hormone levels in the blood increased.

"In addition, the levels of glycerol and free fatty acid, which are lipolysis products, increased in serum."


Glycerophosphocholine


In order to investigate the effect of GPC on adipogenesis and lipid accumulation, the degree of GPC administration and adipocyte differentiation was compared to 3T3-L1 cells.

"GPC reduced the number of lipid droplets by about 22.3% in a concentration-dependent manner."


Sodium deoxycholate

INT J IMMUNOPATHOL PHARMACOL 2010;(23)

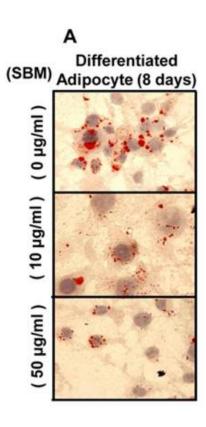
Sodium deoxycholate, which has been recognized for its efficacy and safety through numerous clinical trials, directly destroys and decomposes fat cells themselves to reduce the size of fat cells as well as reduce the number of fat cells underneath to obtain permanent effects.

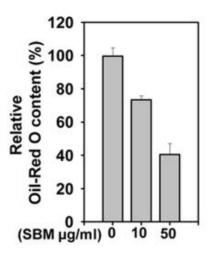
The death rate of adipocytes was remarkably high in the group treated with Sodium deoxycholate, and the shape of adipocytes that were significantly destroyed in droplet image through Oil--Red-O staining.

Bromelain

Proteolytic enzymes contained in pineapple

Inflammation treatment and wound recovery

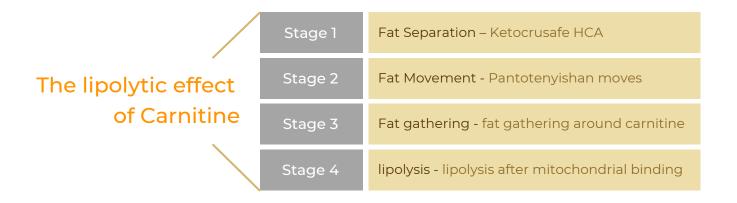



Fat decomposition effect

Reduces swelling and reduces pain

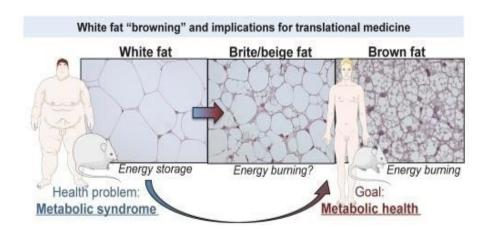
"The phytotherapeutic protein stem bromelain (SBM) is used as an anti-obesity alternative medicine.

We show at the cellular level that SBM irreversibly inhibits 3T3-L1 adipocyte differentiation by reducing adipogenic gene expression and induces apoptosis and lipolysis in mature adipocytes."



Carnitine

- ·Substance essential for converting fat into energy
- •Transports long-chain fatty acids to the mitochondria and helps to actively promote intracellular fatty acid oxidation
- •The liver and kidneys in the human body require significant intake from Lysine and Methionine.

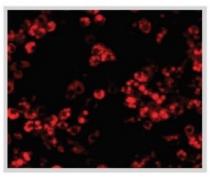


: As a part of the amino acid, the fat in the cell is moved to the mitochondria → it is burned by decomposing fatty acids through the b-oxidation process to generate energy. For this reason, when cartinine is supplemented, the transport of fatty acids becomes smooth and the energy conversion of fat is accelerated

Carnitine

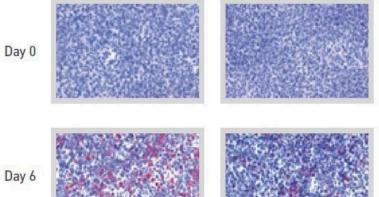
- -Inhibits Phosphodistrase (PDE III), increases cAMP concentration → activates Lipolysis
- -Reduces adipocyte lipid concentration and prevents cellulite formation
- -Flavonoids and polyphenols in plant extracts help smooth discharge/drainage of decomposed fat

- -'White fat', the cause of obesity that accumulates excess fat
- -Burns white fat as energy by generating heat by itself → 'brown fat' that activates metabolism'
- -White fat → Brown fat (Browning process) is the key 'UCP-1' protein in brown fat is an important substance that burns fat and converts it into heat


Thioctic Acid

- Direct action into the adipocyte
- Reduces lipid production, reduces fat storage, and activates adipose tryglyceride lipase (ATGL) enzyme
- Promote transport of fatty acids to peripheral tissues, use of energy sources
- Inhibition of differentiation from pre-adipocyte to mature adipocyte

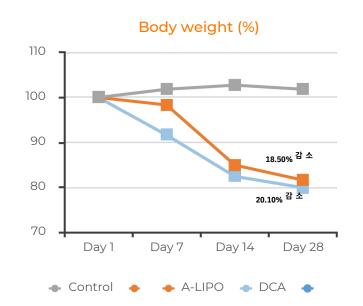
Lipid reduction effect

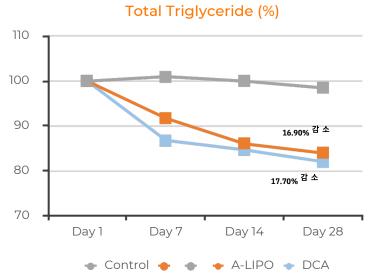

: The amount of lipid in the adipocyte is dropped to about 26%

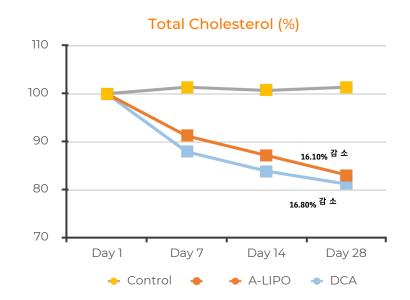
Control Thiotic acid

Inhibition of differentiation into adipocytes

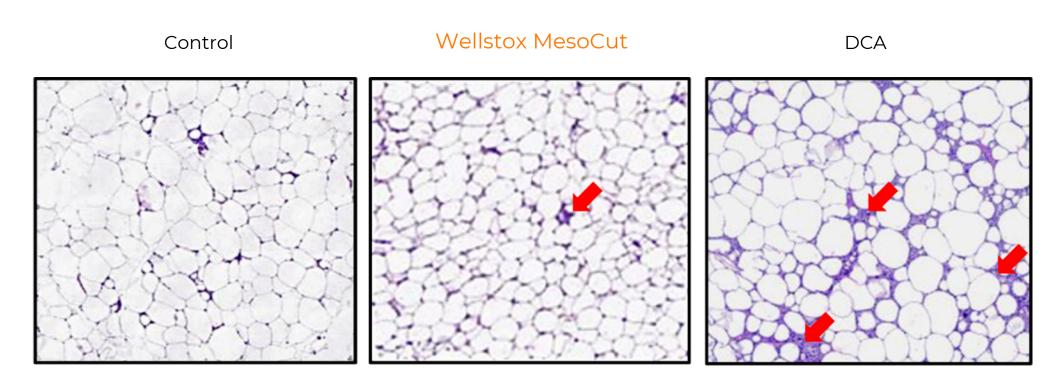
: It can be seen that the differentiation of pre-adipocytes to mature adipocytes is significantly inhibited.


Blue spots: cell nuclei


Red spots: intracellular lipids


Wellstox MesoCut EFFICACY DATA

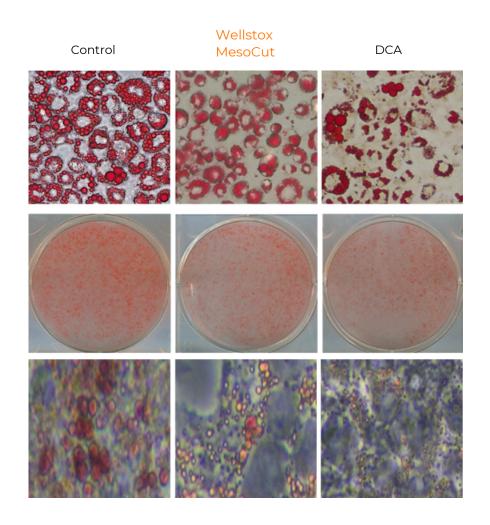
Weight / blood triglyceride / blood cholesterol level comparison


** Content determination criteria

- 1) In the case of DCA, necrosis due to cytotoxic reaction was induced in more than 90% of cases when 1.2% or more was used (previous study). Therefore, the maximum concentration standard within the range that does not cause effective toxicity was set to 0.8%.
- 2) In the case of Wellstox MesoCut, does not show cytotoxicity up to 10.0%, but the maximum effect is the same within the range of 2.5% to 10.0%. Therefore, the content is set based on the minimum effective concentration of 2.5%

Wellstox MesoCut EFFICACY DATA

Comparison of cell necrosis and inflammation through adipose tissue staining



- Wellstox MesoCut test group: Confirmation of overall fat cell size reduction. Inflammatory reaction is seen in some, but very local
- DCA test group: A large amount of fibrosis and some tissue necrotic inflammatory response in tissues were confirmed.

Wellstox MesoCut EFFICACY DATA

Comparison of changes in adipocytes according to treatment of product

[Data Description]

- -Experimental method: Observation of cells over time after administration of each product group to adipocytes
- -Results observation: Adipocyte staining (Oil Red O staining)
- -Interpretation of results:
 - 1)Wellstox MesoCut test group: Confirmation of overall reduction in the number of fat cells and reduction in cell size
 - 2)DCA test group: The overall number of fat cells decreased, but most of them were observed in the form of cellular debris due to necrosis.

COMPARISION OF OTHER PRODUCTS AND Wellstox MesoCut

Difference between other lipolytic products

	Product based on plant extracts	Other lipolysis product	Wellstox MesoCut
Main ingrdient	Juglans Regia Seed, Fucus Vesiculosus, Cynara Scolymus, etc	Phosphatidylcholine, Deoxycholic acid, Aminophyllin etc	Glycerophosphocholine, Carnitine, Sodium Deoxycholate, etc
Durability	Officially 2~3 month	Technically eternal / Officially up to 1 year	Technically eternal / Officially up to 1 year
Advantages	Reduced fat size	Breaks down fat cell	Breaks down fat cell, inhibits lipogenesis
Side effect	Shrunk fat cell turns back to the normal	Swelling, Bruising	No bruising, Less pain
Down time	1 – 3 days	14 – 30 days	1 – 3 days
Pain	Painless	Severe Pain	Mild or painless

APPLICATION SITES

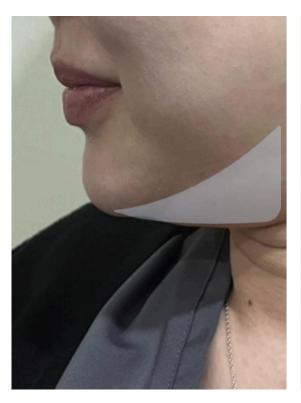
Sites	Recommended dosage		
Double chin	1 cc - 2 cc		
Arms	5 cc – 10 cc		
Abdomen / Love Handles	5 cc – 20 cc		
Thighs	10 cc – <mark>20 cc</mark>		
Treatment cycle	Once every two weeks for the first 3-4 sessions, then once a month		

^{*}The above recommended amount may change according to the opi<mark>nions of doctors or experts or the patient's condition.</mark>

Wellstox MesoCut Packing Unit

ltem	Area	Main ingredient	Packing Unit
Wellstox MesoCut	Face & Body	Glycerophosphocholine Sodium Deoxycholate Thoictic Acid Carnitine Bromelain	10ml x 5ea / box

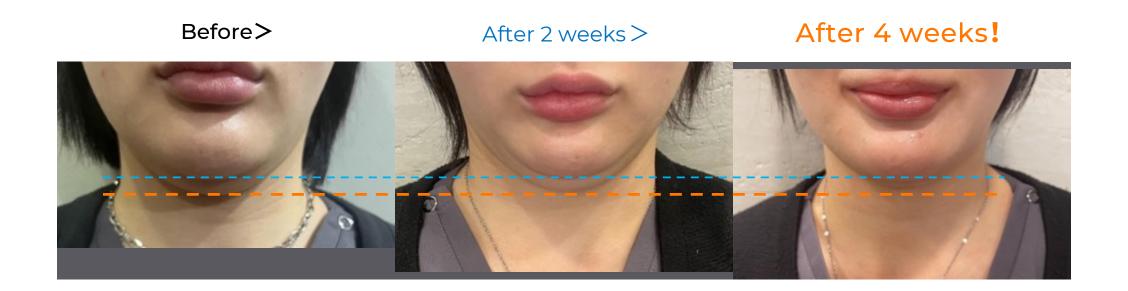
Before & After Wellstox MesoCut



Before & After



Before & After



Before

Right After

After 4 weeks!

Before & After

ILETIŞİM / CONTACT

<u>\$\sqrt{+90}\$ 532 589 97 27</u>

+90 850 303 03 05

info@esteswitch.com

www.esteswitch.com

WELLSTOX

MESOCUT THERAPY

It optimizes the skin condition by removing dead skin particles and helps to make the skin smooth.

It optimizes the skin condition by removing dead skin particles and helps to make the skin smooth.